## Geothermal Wells at Harvard LESSONS LEARNED



Presented by Harvard University Campus Services:
 Facilities Maintenance Operations
 The Office for Sustainability



- 1. Are GSHPs Good for Harvard?
- 2. How GSHPs Work
- 3. Lessons Learned from Current Campus Installations
- 4. Environmental Permitting

### Are GSHPs Good for Harvard?



©Harvard Campus Services, 2007

### **Environmental Benefits**

- Use less energy than conventional HVAC systems
  - Can significantly reduces emissions of greenhouse gasses by using "free" energy from the earth
  - More efficient performance
    - COP of 3 to 6 versus 1.5 to 2.5 (Source: DOE)
- Can be more efficient than conventional heating systems
  - Up to 44% more efficient than air source heat pumps, 72% more efficient than electrical resistance heating (Source: DOE)

©Harvard Campus Services, 2007 • COP (coefficient of performance)

### O&M Benefits



- Lower energy costs than conventional air source cooling
  - 20-50% reduction in energy bills (Source: EPA)
- Lower maintenance costs
  - No equipment is exposed to weather
  - Fewer moving parts to fail

### Aesthetic Benefits



- No cooling towers or other HVAC equipment on roofs
- No noise from HVAC equipment



©Harvard Campus Services, 2007

### GSHPs Can Be Good For Harvard

- Properly designed, installed, permitted and maintained systems can be an effective alternative to conventional heating and cooling technology
- Appropriately scaled GSHP systems can be a successful part of Harvard's energy portfolio



## Part II: How GSHPs Work



©Harvard Campus Services, 2007

### Types of GSHP Systems

#### Closed Loop

Uses the earth as the heat source and heat sink with anti-freeze additive to the loop water

All existing installations at Harvard are open loop, standing column wells!



#### Open Loop

Uses a surface or underground water source (lake, river, or well) as both the heat source and the heat sink

#### Standing Column Well



©Harvard Campus Services, 2007

### Layout of a Typical Standing Column Well Installation at Harvard





### Understanding Bleed

- To raise or lower well water temperature, a portion of return water can be "bled" from the well
- This allows fresh water to enter the well column, raising or lowering the temperature of the well
- Bleed water must then be reused or disposed of



©Harvard Campus Services, 2007



Typical water-to-water heat pumps (30 tons each)

### Harvard Well Inventory

|                                                                                           | Wells | Depth<br>(feet) | Designed<br>to Bleed | Pump<br>Depth<br>(feet) | Pump<br>Capacity<br>(GPM) | VFDs* |
|-------------------------------------------------------------------------------------------|-------|-----------------|----------------------|-------------------------|---------------------------|-------|
| Blackstone                                                                                | 2     | 1500            | Yes                  | 110                     | 180                       | Yes   |
| QRAC                                                                                      | 2     | 1500            | Yes                  | 100                     | 180                       | Yes   |
| 90 Mount Auburn                                                                           | 3     | 450 - 650       | Yes                  | 100                     | 270                       | Yes   |
| Radcliffe Gym                                                                             | 2     | 1500            | Yes                  | 100                     | 160                       | Yes   |
| 2 Arrow St<br>(condo).                                                                    | 3     | 1500            | Νο                   |                         |                           | Yes   |
| 1 Francis Ave.                                                                            | 2     | 750, 850        | Yes                  | 100                     | 160                       | Yes   |
| Future Projects                                                                           |       |                 |                      |                         |                           |       |
| Byerly Hall                                                                               | 5     | 1500            | No                   | 100                     | 410                       | Yes   |
| Weld Hill<br>(Closed Loop)                                                                | 88    | 500             | No                   | N/A                     | 680                       | Yes   |
| * Variable Frequency Drives allow a pump to run at partial capacity, reducing energy cost |       |                 |                      |                         |                           |       |

### Part III: Lessons Learned from Current Campus Installations



### Lessons and Recommendations

- Design
- Installation
- O&M





# Design<br/>Lesson1Know the condition and temperature<br/>of the groundwater

- Heat pumps and piping for several Harvard projects were not designed for brackish water
  - Salinity has been encountered in some of Harvard's Wells
- Ground water temperatures may vary from predictions by the project engineer
  - Can dramatically affect bleed rate and disposal strategy
- A geotechnical engineer <u>cannot</u> accurately predict groundwater conditions



#### Design Lesson 1

# Recommendations

 Identify local water conditions before making piping and heat pump selections

- Some of Harvard wells installed at 1500' have brackish water
- All Harvard wells have some level of iron Bactaria in the water
- Native water temperatures can range from 55 to 65 degrees
- **Drill a test well** or consider phasing construction so that wells are completed before pipe and equipment selection
  - Average cost to drill a well is ~\$125/ft
- Use PVC for all internal system piping for deep well installations

#### Design Lesson 1

# Recommendations

- Install a Heat Exchanger to isolate the Heat Pumps from the Well Water
  - Some of Harvard wells installed at 1500' have brackish water
  - All Harvard wells have some level of iron Bacteria in the water
  - Heat Exchangers in a Heat Pump cannot tolerate any contamination
  - \* Harvard has installed Heat Exchangers on two systems, this has reduced maintenance and increased overall efficiency.

# Recommendations

- Install a Coupon Rack to measure corrosion on metal components throughout the system (heat exchanger, valves, pumps, etc)
- Examples:

Design

Lesson 1

- Copper
- Iron
- Stainless Steel
- Bacteria



 Ever thirty days have an authorized Chemical Company analyze the coupons to determine rate of metal erosion
 ©Harvard Campus Services, 2007

#### Design Lesson 2

# Understand the function of the well as a heat exchanger

- Geothermal wells transfer heat to or from the ground along their vertical length
  - The longer the well, the more heat exchange capacity it can provide
- The surface area of the well (length) is **critical** to its function and capacity
- Well drillers may want to stop drilling once sufficient water flow rate is achieved
  - This can save money on drilling costs but can lead to serious problems



www.bestwaterwelldriller.com

#### Design Lesson 2

# Recommendations

- Drill well to design depth
- Do not short drill!
  - Short drilling reduces the heat exchange capacity of the well
    - Likely to necessitate more frequent bleeding
    - Reduces the overall output capacity of the system

# Design<br/>Lesson 3Understand the relationship between heat<br/>exchange capacity of the well and bleed

- Geothermal wells can be bled to increase their capacity
  - When a system is bleeding, it is operating at reduced efficiency
- Disposal of bleed water introduces regulatory issues and added cost
  - Due to salinity at 1500' depth, bleed water reuse options may be limited
  - Regulation may ultimately prohibit bleed entirely

# Recommendations

 Design your system for Zero Bleed

Design

Lesson 3

- Include this requirement in construction specifications and enforce it!
- Strategies include increasing capacity of the well field or fracturing wells to increase hydraulic flow
- Well Yield\* = One Ton per 72' at 75° F (1,500' well produces 21 tons not 30!)



Brevardcounty.us

#### **Design** Lesson 4 **Metering and controls are critical**

- Without metering, well performance and bleed rate is unknown
- Without monitoring well water supply and return flows, it is possible to draw the water level below the pump
- Metering and controls provide capability to diagnose problems, trend well performance, and collect compliance data



# Recommendations

 Specify and install adequate well monitoring and controls, including

- Measure flow rate and temperature on:
  - Supply

Design

Lesson 4

- Return
- Bleed
- Flow switch on well supply line
- Full integration with building automation controls
- Install a level meter on each well
- Resist temptation to eliminate controls and metering during Value Engineering!

### Design Lesson 5 Site Wells Appropriately

- Allow for future access to wells for maintenance and repairs
- Consider well spacing when reviewing the site plan
  - Thermal interactions between closely spaced wells can reduce system efficiency



### Design Lesson 6 Select refrigerants carefully

- R-410A, the environmentally preferable refrigerant, has a smaller working range than conventional R-22 (which is being phased out)
  - Heat pumps operating with R-410A can handle water up to 98 degrees before cycling off
  - Heat pumps operating with R-22 can handle water up to 105 degrees
  - BUT warmer condenser water reduces heat pump efficiency

# Recommendations

### Avoid R-22 refrigerant

- 2010: no new equipment manufactured with R-22
- 2020: no new R-22 will be produced

Design

Lesson 6

### **Use Wells for Heating AND Cooling**

- Wells are designed to transfer heat to and from the ground
- Ideally, net transfer of heat into the ground in summer and out of the ground in winter should be zero



www.istockphoto.com

Design

Lesson 7

#### Design Lesson 8

## Consider Interactions with Neighboring Wells

- While installing a second set of wells, HPs at a nearby existing building were affected by excessive mud, rocks, and stone dust trapped in the condensing water filters
- Conclusion: Drilling the new wells generated debris that was drawn into the existing wells (exacerbated during periods of bleed)
  - Clogged strainers caused the heat pumps difficulties



#### Design Lesson 8 Recommendations

- Closely monitor water conditions in nearby wells whenever drilling new installations
- If possible, do not bleed neighboring wells when new wells are being drilled
- If existing wells have already been affected by drilling, possible solutions include:
  - Flush existing wells and inspect discharge
  - Re-circulate water in existing wells without running it through a heat pump and monitor well water level
  - If wells are blocked, develop a cleaning process

#### Design Lesson 9

## Prevent Sediment from Entering the Intake Sleeve

- Sediment quickly clogs filters and reduces efficiency
- Found to be a particular problem on start-up and early operation of all systems across campus

# Recommendations

- Design a 20' solid riser
  below the perforated pipe at the bottom of the well
  - Prevents sediment at well bottom from entering intake piping



©Harvard Campus Services, 2007

Design

Lesson 9

# Install<br/>Lesson 1Understand piping and balancing issues

- Poorly designed pipe runs can prevent water from returning evenly to the wells
- Imbalances in water flow to wells can reduce system capacity
- Proper controls can reveal these imbalances before they become problematic

# Recommendations

- Insist on Coordination Drawings prior to layout and installation of piping
- Develop an owner's acceptance process to ensure proper balancing and full commissioning of all systems



www.nj.com

Install

Lesson 1

# InstallImproper positioning of well sleeve andLesson 2return piping can impact performance

- Wells can short cycle if the sleeve is installed below the water level
  - Return water can enter the supply feed and dilute the supply water temperature
- Incorrectly installed or positioned return water pipe can cause air to enter the well, resulting in pump cavitation and failure



\*Not to scale

#### Install Lesson 2

## Recommendations

 Utilize an owner's acceptance process to verify proper installation, start up, and turnover of the well system



©Harvard Campus Services, 2007

#### Install Lesson 3

### Prevent solvents from entering groundwater

- If using PVC ensure that adhesives on well piping are fully cured so that VOCs (from solvents) are not introduced into groundwater
- Most well drillers do not allow proper curing of adhesives before installing PVC well pipe
  - Volatile organic compounds (VOCs)

# Recommendations

- Use Certa-Lok<sup>TM</sup> Pipe as alternative to PVC
  - No adhesives needed!
- Monitor pipe joining process in field to ensure compliance with specifications



Install

Lesson 3

# O&M<br/>Lesson 1Maintenance starts on Day One!

- Plugged strainers can reduce water flow and cause
   evaporators to freeze (if internal heat pump safety controls do not engage)
- Warranties do not cover damage caused by improper maintenance!



Iron sludge from a blocked strainer

©Harvard Campus Services, 2007

# Recommendations

- Have a preventative maintenance plan in place before your system comes online
- Clean strainers frequently, especially during the first months of operation
- Require installing contractor or manufacturer to train local building operations team on primary equipment prior to start up

**O**&M

Lesson 1

# O&MLesson 2

- Consultants may recommend periodically adding bleach directly to well water to sterilize the well
- Any additive to well <u>must be</u> pre-approved by DEP
  - Bleach poured into the well can enter the aquifer and contaminate it or cause unintended chemical reactions



## Part IV: Environmental Permitting



The following slides are specific to Harvard and Massachusetts. Consult your local authorities for permitting information relevant to geothermal systems.

©Harvard Campus Services, 2007

#### Design Lesson 8

# Identify and examine all permitting implications during design

- Refer to EH&S CAPS specification
- Department of Environmental Protection (DEP) may require:
  - Open Loop Groundwater Discharge Permit
  - Closed Loop Underground Injection Registration
- Massachusetts Water Resources Authority (MWRA)
  - Bleed discharge prohibition?
- Environmental Protection Agency (EPA) regulates:
  - Bleed discharge to surface waters

# Design<br/>Lesson 9Design for NO BLEED to sewer

- Regulation may eventually prohibit bleed discharge to sewer
- Investigate reuse options
  - Reuse of bleed water in facility applications
  - Discharge drywell system
  - Discharge to surface water (NPDES permitting)

#### Design Lesson 10 Investigate site soil/groundwater conditions

- Assess potential for historical soil or groundwater contamination
- Establish plan to re-use any soil on-site
- Obtain de-watering permit (EPA/MWRA)

### Design Lesson 11 Initiate DEP Permitting early

- Allow at least 3-6 months for the Permitting Process
  - Open Loop and Closed Loop installations must go through an application process, well water sampling, public comment period and must pay a fee
  - Non-Consumptive Determination (Water Management)

# Design<br/>Lesson 12Understand metering/monitoring<br/>for DEP permit requirements

- Permits require submission of specific data, so wells must be able to provide the following information:
  - Flow/Temp (continuous reading daily)
  - pH, chloride, specific conductance, water treatment chemicals (grab samples/monthly)
  - Bleed discharge volume
- Specify CertaLok<sup>TM</sup> piping
- No additives to well without prior DEP approval
- Understand permit reporting/maintenance program

### **Environmental Summary**

- Assess regulatory permitting requirements during design
  - Refer to EH&S CAPS specifications
- Assess site soil/groundwater conditions historical contamination
  - Plan to re-use soils on-site
- Design system for zero bleed discharge to sewer
- Schedule accommodate lead time for dewatering permit and DEP permitting (3-6 months)
- Specify monitoring and metering controls, CertaLok piping
- Determine permit reporting/maintenance program



• **Tony Ragucci**, FMO: tony\_ragucci@harvard.edu